{"version":3,"file":"chunk-klb-pay15.js","sources":["../node_modules/gl-matrix/esm/common.js","../node_modules/gl-matrix/esm/mat3.js","../node_modules/gl-matrix/esm/vec3.js","../node_modules/gl-matrix/esm/vec2.js"],"sourcesContent":["/**\n * Common utilities\n * @module glMatrix\n */\n// Configuration Constants\nexport var EPSILON = 0.000001;\nexport var ARRAY_TYPE = typeof Float32Array !== 'undefined' ? Float32Array : Array;\nexport var RANDOM = Math.random;\n/**\n * Sets the type of array used when creating new vectors and matrices\n *\n * @param {Float32ArrayConstructor | ArrayConstructor} type Array type, such as Float32Array or Array\n */\n\nexport function setMatrixArrayType(type) {\n ARRAY_TYPE = type;\n}\nvar degree = Math.PI / 180;\n/**\n * Convert Degree To Radian\n *\n * @param {Number} a Angle in Degrees\n */\n\nexport function toRadian(a) {\n return a * degree;\n}\n/**\n * Tests whether or not the arguments have approximately the same value, within an absolute\n * or relative tolerance of glMatrix.EPSILON (an absolute tolerance is used for values less\n * than or equal to 1.0, and a relative tolerance is used for larger values)\n *\n * @param {Number} a The first number to test.\n * @param {Number} b The second number to test.\n * @returns {Boolean} True if the numbers are approximately equal, false otherwise.\n */\n\nexport function equals(a, b) {\n return Math.abs(a - b) <= EPSILON * Math.max(1.0, Math.abs(a), Math.abs(b));\n}\nif (!Math.hypot) Math.hypot = function () {\n var y = 0,\n i = arguments.length;\n\n while (i--) {\n y += arguments[i] * arguments[i];\n }\n\n return Math.sqrt(y);\n};","import * as glMatrix from \"./common.js\";\n/**\n * 3x3 Matrix\n * @module mat3\n */\n\n/**\n * Creates a new identity mat3\n *\n * @returns {mat3} a new 3x3 matrix\n */\n\nexport function create() {\n var out = new glMatrix.ARRAY_TYPE(9);\n\n if (glMatrix.ARRAY_TYPE != Float32Array) {\n out[1] = 0;\n out[2] = 0;\n out[3] = 0;\n out[5] = 0;\n out[6] = 0;\n out[7] = 0;\n }\n\n out[0] = 1;\n out[4] = 1;\n out[8] = 1;\n return out;\n}\n/**\n * Copies the upper-left 3x3 values into the given mat3.\n *\n * @param {mat3} out the receiving 3x3 matrix\n * @param {ReadonlyMat4} a the source 4x4 matrix\n * @returns {mat3} out\n */\n\nexport function fromMat4(out, a) {\n out[0] = a[0];\n out[1] = a[1];\n out[2] = a[2];\n out[3] = a[4];\n out[4] = a[5];\n out[5] = a[6];\n out[6] = a[8];\n out[7] = a[9];\n out[8] = a[10];\n return out;\n}\n/**\n * Creates a new mat3 initialized with values from an existing matrix\n *\n * @param {ReadonlyMat3} a matrix to clone\n * @returns {mat3} a new 3x3 matrix\n */\n\nexport function clone(a) {\n var out = new glMatrix.ARRAY_TYPE(9);\n out[0] = a[0];\n out[1] = a[1];\n out[2] = a[2];\n out[3] = a[3];\n out[4] = a[4];\n out[5] = a[5];\n out[6] = a[6];\n out[7] = a[7];\n out[8] = a[8];\n return out;\n}\n/**\n * Copy the values from one mat3 to another\n *\n * @param {mat3} out the receiving matrix\n * @param {ReadonlyMat3} a the source matrix\n * @returns {mat3} out\n */\n\nexport function copy(out, a) {\n out[0] = a[0];\n out[1] = a[1];\n out[2] = a[2];\n out[3] = a[3];\n out[4] = a[4];\n out[5] = a[5];\n out[6] = a[6];\n out[7] = a[7];\n out[8] = a[8];\n return out;\n}\n/**\n * Create a new mat3 with the given values\n *\n * @param {Number} m00 Component in column 0, row 0 position (index 0)\n * @param {Number} m01 Component in column 0, row 1 position (index 1)\n * @param {Number} m02 Component in column 0, row 2 position (index 2)\n * @param {Number} m10 Component in column 1, row 0 position (index 3)\n * @param {Number} m11 Component in column 1, row 1 position (index 4)\n * @param {Number} m12 Component in column 1, row 2 position (index 5)\n * @param {Number} m20 Component in column 2, row 0 position (index 6)\n * @param {Number} m21 Component in column 2, row 1 position (index 7)\n * @param {Number} m22 Component in column 2, row 2 position (index 8)\n * @returns {mat3} A new mat3\n */\n\nexport function fromValues(m00, m01, m02, m10, m11, m12, m20, m21, m22) {\n var out = new glMatrix.ARRAY_TYPE(9);\n out[0] = m00;\n out[1] = m01;\n out[2] = m02;\n out[3] = m10;\n out[4] = m11;\n out[5] = m12;\n out[6] = m20;\n out[7] = m21;\n out[8] = m22;\n return out;\n}\n/**\n * Set the components of a mat3 to the given values\n *\n * @param {mat3} out the receiving matrix\n * @param {Number} m00 Component in column 0, row 0 position (index 0)\n * @param {Number} m01 Component in column 0, row 1 position (index 1)\n * @param {Number} m02 Component in column 0, row 2 position (index 2)\n * @param {Number} m10 Component in column 1, row 0 position (index 3)\n * @param {Number} m11 Component in column 1, row 1 position (index 4)\n * @param {Number} m12 Component in column 1, row 2 position (index 5)\n * @param {Number} m20 Component in column 2, row 0 position (index 6)\n * @param {Number} m21 Component in column 2, row 1 position (index 7)\n * @param {Number} m22 Component in column 2, row 2 position (index 8)\n * @returns {mat3} out\n */\n\nexport function set(out, m00, m01, m02, m10, m11, m12, m20, m21, m22) {\n out[0] = m00;\n out[1] = m01;\n out[2] = m02;\n out[3] = m10;\n out[4] = m11;\n out[5] = m12;\n out[6] = m20;\n out[7] = m21;\n out[8] = m22;\n return out;\n}\n/**\n * Set a mat3 to the identity matrix\n *\n * @param {mat3} out the receiving matrix\n * @returns {mat3} out\n */\n\nexport function identity(out) {\n out[0] = 1;\n out[1] = 0;\n out[2] = 0;\n out[3] = 0;\n out[4] = 1;\n out[5] = 0;\n out[6] = 0;\n out[7] = 0;\n out[8] = 1;\n return out;\n}\n/**\n * Transpose the values of a mat3\n *\n * @param {mat3} out the receiving matrix\n * @param {ReadonlyMat3} a the source matrix\n * @returns {mat3} out\n */\n\nexport function transpose(out, a) {\n // If we are transposing ourselves we can skip a few steps but have to cache some values\n if (out === a) {\n var a01 = a[1],\n a02 = a[2],\n a12 = a[5];\n out[1] = a[3];\n out[2] = a[6];\n out[3] = a01;\n out[5] = a[7];\n out[6] = a02;\n out[7] = a12;\n } else {\n out[0] = a[0];\n out[1] = a[3];\n out[2] = a[6];\n out[3] = a[1];\n out[4] = a[4];\n out[5] = a[7];\n out[6] = a[2];\n out[7] = a[5];\n out[8] = a[8];\n }\n\n return out;\n}\n/**\n * Inverts a mat3\n *\n * @param {mat3} out the receiving matrix\n * @param {ReadonlyMat3} a the source matrix\n * @returns {mat3} out\n */\n\nexport function invert(out, a) {\n var a00 = a[0],\n a01 = a[1],\n a02 = a[2];\n var a10 = a[3],\n a11 = a[4],\n a12 = a[5];\n var a20 = a[6],\n a21 = a[7],\n a22 = a[8];\n var b01 = a22 * a11 - a12 * a21;\n var b11 = -a22 * a10 + a12 * a20;\n var b21 = a21 * a10 - a11 * a20; // Calculate the determinant\n\n var det = a00 * b01 + a01 * b11 + a02 * b21;\n\n if (!det) {\n return null;\n }\n\n det = 1.0 / det;\n out[0] = b01 * det;\n out[1] = (-a22 * a01 + a02 * a21) * det;\n out[2] = (a12 * a01 - a02 * a11) * det;\n out[3] = b11 * det;\n out[4] = (a22 * a00 - a02 * a20) * det;\n out[5] = (-a12 * a00 + a02 * a10) * det;\n out[6] = b21 * det;\n out[7] = (-a21 * a00 + a01 * a20) * det;\n out[8] = (a11 * a00 - a01 * a10) * det;\n return out;\n}\n/**\n * Calculates the adjugate of a mat3\n *\n * @param {mat3} out the receiving matrix\n * @param {ReadonlyMat3} a the source matrix\n * @returns {mat3} out\n */\n\nexport function adjoint(out, a) {\n var a00 = a[0],\n a01 = a[1],\n a02 = a[2];\n var a10 = a[3],\n a11 = a[4],\n a12 = a[5];\n var a20 = a[6],\n a21 = a[7],\n a22 = a[8];\n out[0] = a11 * a22 - a12 * a21;\n out[1] = a02 * a21 - a01 * a22;\n out[2] = a01 * a12 - a02 * a11;\n out[3] = a12 * a20 - a10 * a22;\n out[4] = a00 * a22 - a02 * a20;\n out[5] = a02 * a10 - a00 * a12;\n out[6] = a10 * a21 - a11 * a20;\n out[7] = a01 * a20 - a00 * a21;\n out[8] = a00 * a11 - a01 * a10;\n return out;\n}\n/**\n * Calculates the determinant of a mat3\n *\n * @param {ReadonlyMat3} a the source matrix\n * @returns {Number} determinant of a\n */\n\nexport function determinant(a) {\n var a00 = a[0],\n a01 = a[1],\n a02 = a[2];\n var a10 = a[3],\n a11 = a[4],\n a12 = a[5];\n var a20 = a[6],\n a21 = a[7],\n a22 = a[8];\n return a00 * (a22 * a11 - a12 * a21) + a01 * (-a22 * a10 + a12 * a20) + a02 * (a21 * a10 - a11 * a20);\n}\n/**\n * Multiplies two mat3's\n *\n * @param {mat3} out the receiving matrix\n * @param {ReadonlyMat3} a the first operand\n * @param {ReadonlyMat3} b the second operand\n * @returns {mat3} out\n */\n\nexport function multiply(out, a, b) {\n var a00 = a[0],\n a01 = a[1],\n a02 = a[2];\n var a10 = a[3],\n a11 = a[4],\n a12 = a[5];\n var a20 = a[6],\n a21 = a[7],\n a22 = a[8];\n var b00 = b[0],\n b01 = b[1],\n b02 = b[2];\n var b10 = b[3],\n b11 = b[4],\n b12 = b[5];\n var b20 = b[6],\n b21 = b[7],\n b22 = b[8];\n out[0] = b00 * a00 + b01 * a10 + b02 * a20;\n out[1] = b00 * a01 + b01 * a11 + b02 * a21;\n out[2] = b00 * a02 + b01 * a12 + b02 * a22;\n out[3] = b10 * a00 + b11 * a10 + b12 * a20;\n out[4] = b10 * a01 + b11 * a11 + b12 * a21;\n out[5] = b10 * a02 + b11 * a12 + b12 * a22;\n out[6] = b20 * a00 + b21 * a10 + b22 * a20;\n out[7] = b20 * a01 + b21 * a11 + b22 * a21;\n out[8] = b20 * a02 + b21 * a12 + b22 * a22;\n return out;\n}\n/**\n * Translate a mat3 by the given vector\n *\n * @param {mat3} out the receiving matrix\n * @param {ReadonlyMat3} a the matrix to translate\n * @param {ReadonlyVec2} v vector to translate by\n * @returns {mat3} out\n */\n\nexport function translate(out, a, v) {\n var a00 = a[0],\n a01 = a[1],\n a02 = a[2],\n a10 = a[3],\n a11 = a[4],\n a12 = a[5],\n a20 = a[6],\n a21 = a[7],\n a22 = a[8],\n x = v[0],\n y = v[1];\n out[0] = a00;\n out[1] = a01;\n out[2] = a02;\n out[3] = a10;\n out[4] = a11;\n out[5] = a12;\n out[6] = x * a00 + y * a10 + a20;\n out[7] = x * a01 + y * a11 + a21;\n out[8] = x * a02 + y * a12 + a22;\n return out;\n}\n/**\n * Rotates a mat3 by the given angle\n *\n * @param {mat3} out the receiving matrix\n * @param {ReadonlyMat3} a the matrix to rotate\n * @param {Number} rad the angle to rotate the matrix by\n * @returns {mat3} out\n */\n\nexport function rotate(out, a, rad) {\n var a00 = a[0],\n a01 = a[1],\n a02 = a[2],\n a10 = a[3],\n a11 = a[4],\n a12 = a[5],\n a20 = a[6],\n a21 = a[7],\n a22 = a[8],\n s = Math.sin(rad),\n c = Math.cos(rad);\n out[0] = c * a00 + s * a10;\n out[1] = c * a01 + s * a11;\n out[2] = c * a02 + s * a12;\n out[3] = c * a10 - s * a00;\n out[4] = c * a11 - s * a01;\n out[5] = c * a12 - s * a02;\n out[6] = a20;\n out[7] = a21;\n out[8] = a22;\n return out;\n}\n/**\n * Scales the mat3 by the dimensions in the given vec2\n *\n * @param {mat3} out the receiving matrix\n * @param {ReadonlyMat3} a the matrix to rotate\n * @param {ReadonlyVec2} v the vec2 to scale the matrix by\n * @returns {mat3} out\n **/\n\nexport function scale(out, a, v) {\n var x = v[0],\n y = v[1];\n out[0] = x * a[0];\n out[1] = x * a[1];\n out[2] = x * a[2];\n out[3] = y * a[3];\n out[4] = y * a[4];\n out[5] = y * a[5];\n out[6] = a[6];\n out[7] = a[7];\n out[8] = a[8];\n return out;\n}\n/**\n * Creates a matrix from a vector translation\n * This is equivalent to (but much faster than):\n *\n * mat3.identity(dest);\n * mat3.translate(dest, dest, vec);\n *\n * @param {mat3} out mat3 receiving operation result\n * @param {ReadonlyVec2} v Translation vector\n * @returns {mat3} out\n */\n\nexport function fromTranslation(out, v) {\n out[0] = 1;\n out[1] = 0;\n out[2] = 0;\n out[3] = 0;\n out[4] = 1;\n out[5] = 0;\n out[6] = v[0];\n out[7] = v[1];\n out[8] = 1;\n return out;\n}\n/**\n * Creates a matrix from a given angle\n * This is equivalent to (but much faster than):\n *\n * mat3.identity(dest);\n * mat3.rotate(dest, dest, rad);\n *\n * @param {mat3} out mat3 receiving operation result\n * @param {Number} rad the angle to rotate the matrix by\n * @returns {mat3} out\n */\n\nexport function fromRotation(out, rad) {\n var s = Math.sin(rad),\n c = Math.cos(rad);\n out[0] = c;\n out[1] = s;\n out[2] = 0;\n out[3] = -s;\n out[4] = c;\n out[5] = 0;\n out[6] = 0;\n out[7] = 0;\n out[8] = 1;\n return out;\n}\n/**\n * Creates a matrix from a vector scaling\n * This is equivalent to (but much faster than):\n *\n * mat3.identity(dest);\n * mat3.scale(dest, dest, vec);\n *\n * @param {mat3} out mat3 receiving operation result\n * @param {ReadonlyVec2} v Scaling vector\n * @returns {mat3} out\n */\n\nexport function fromScaling(out, v) {\n out[0] = v[0];\n out[1] = 0;\n out[2] = 0;\n out[3] = 0;\n out[4] = v[1];\n out[5] = 0;\n out[6] = 0;\n out[7] = 0;\n out[8] = 1;\n return out;\n}\n/**\n * Copies the values from a mat2d into a mat3\n *\n * @param {mat3} out the receiving matrix\n * @param {ReadonlyMat2d} a the matrix to copy\n * @returns {mat3} out\n **/\n\nexport function fromMat2d(out, a) {\n out[0] = a[0];\n out[1] = a[1];\n out[2] = 0;\n out[3] = a[2];\n out[4] = a[3];\n out[5] = 0;\n out[6] = a[4];\n out[7] = a[5];\n out[8] = 1;\n return out;\n}\n/**\n * Calculates a 3x3 matrix from the given quaternion\n *\n * @param {mat3} out mat3 receiving operation result\n * @param {ReadonlyQuat} q Quaternion to create matrix from\n *\n * @returns {mat3} out\n */\n\nexport function fromQuat(out, q) {\n var x = q[0],\n y = q[1],\n z = q[2],\n w = q[3];\n var x2 = x + x;\n var y2 = y + y;\n var z2 = z + z;\n var xx = x * x2;\n var yx = y * x2;\n var yy = y * y2;\n var zx = z * x2;\n var zy = z * y2;\n var zz = z * z2;\n var wx = w * x2;\n var wy = w * y2;\n var wz = w * z2;\n out[0] = 1 - yy - zz;\n out[3] = yx - wz;\n out[6] = zx + wy;\n out[1] = yx + wz;\n out[4] = 1 - xx - zz;\n out[7] = zy - wx;\n out[2] = zx - wy;\n out[5] = zy + wx;\n out[8] = 1 - xx - yy;\n return out;\n}\n/**\n * Calculates a 3x3 normal matrix (transpose inverse) from the 4x4 matrix\n *\n * @param {mat3} out mat3 receiving operation result\n * @param {ReadonlyMat4} a Mat4 to derive the normal matrix from\n *\n * @returns {mat3} out\n */\n\nexport function normalFromMat4(out, a) {\n var a00 = a[0],\n a01 = a[1],\n a02 = a[2],\n a03 = a[3];\n var a10 = a[4],\n a11 = a[5],\n a12 = a[6],\n a13 = a[7];\n var a20 = a[8],\n a21 = a[9],\n a22 = a[10],\n a23 = a[11];\n var a30 = a[12],\n a31 = a[13],\n a32 = a[14],\n a33 = a[15];\n var b00 = a00 * a11 - a01 * a10;\n var b01 = a00 * a12 - a02 * a10;\n var b02 = a00 * a13 - a03 * a10;\n var b03 = a01 * a12 - a02 * a11;\n var b04 = a01 * a13 - a03 * a11;\n var b05 = a02 * a13 - a03 * a12;\n var b06 = a20 * a31 - a21 * a30;\n var b07 = a20 * a32 - a22 * a30;\n var b08 = a20 * a33 - a23 * a30;\n var b09 = a21 * a32 - a22 * a31;\n var b10 = a21 * a33 - a23 * a31;\n var b11 = a22 * a33 - a23 * a32; // Calculate the determinant\n\n var det = b00 * b11 - b01 * b10 + b02 * b09 + b03 * b08 - b04 * b07 + b05 * b06;\n\n if (!det) {\n return null;\n }\n\n det = 1.0 / det;\n out[0] = (a11 * b11 - a12 * b10 + a13 * b09) * det;\n out[1] = (a12 * b08 - a10 * b11 - a13 * b07) * det;\n out[2] = (a10 * b10 - a11 * b08 + a13 * b06) * det;\n out[3] = (a02 * b10 - a01 * b11 - a03 * b09) * det;\n out[4] = (a00 * b11 - a02 * b08 + a03 * b07) * det;\n out[5] = (a01 * b08 - a00 * b10 - a03 * b06) * det;\n out[6] = (a31 * b05 - a32 * b04 + a33 * b03) * det;\n out[7] = (a32 * b02 - a30 * b05 - a33 * b01) * det;\n out[8] = (a30 * b04 - a31 * b02 + a33 * b00) * det;\n return out;\n}\n/**\n * Generates a 2D projection matrix with the given bounds\n *\n * @param {mat3} out mat3 frustum matrix will be written into\n * @param {number} width Width of your gl context\n * @param {number} height Height of gl context\n * @returns {mat3} out\n */\n\nexport function projection(out, width, height) {\n out[0] = 2 / width;\n out[1] = 0;\n out[2] = 0;\n out[3] = 0;\n out[4] = -2 / height;\n out[5] = 0;\n out[6] = -1;\n out[7] = 1;\n out[8] = 1;\n return out;\n}\n/**\n * Returns a string representation of a mat3\n *\n * @param {ReadonlyMat3} a matrix to represent as a string\n * @returns {String} string representation of the matrix\n */\n\nexport function str(a) {\n return \"mat3(\" + a[0] + \", \" + a[1] + \", \" + a[2] + \", \" + a[3] + \", \" + a[4] + \", \" + a[5] + \", \" + a[6] + \", \" + a[7] + \", \" + a[8] + \")\";\n}\n/**\n * Returns Frobenius norm of a mat3\n *\n * @param {ReadonlyMat3} a the matrix to calculate Frobenius norm of\n * @returns {Number} Frobenius norm\n */\n\nexport function frob(a) {\n return Math.hypot(a[0], a[1], a[2], a[3], a[4], a[5], a[6], a[7], a[8]);\n}\n/**\n * Adds two mat3's\n *\n * @param {mat3} out the receiving matrix\n * @param {ReadonlyMat3} a the first operand\n * @param {ReadonlyMat3} b the second operand\n * @returns {mat3} out\n */\n\nexport function add(out, a, b) {\n out[0] = a[0] + b[0];\n out[1] = a[1] + b[1];\n out[2] = a[2] + b[2];\n out[3] = a[3] + b[3];\n out[4] = a[4] + b[4];\n out[5] = a[5] + b[5];\n out[6] = a[6] + b[6];\n out[7] = a[7] + b[7];\n out[8] = a[8] + b[8];\n return out;\n}\n/**\n * Subtracts matrix b from matrix a\n *\n * @param {mat3} out the receiving matrix\n * @param {ReadonlyMat3} a the first operand\n * @param {ReadonlyMat3} b the second operand\n * @returns {mat3} out\n */\n\nexport function subtract(out, a, b) {\n out[0] = a[0] - b[0];\n out[1] = a[1] - b[1];\n out[2] = a[2] - b[2];\n out[3] = a[3] - b[3];\n out[4] = a[4] - b[4];\n out[5] = a[5] - b[5];\n out[6] = a[6] - b[6];\n out[7] = a[7] - b[7];\n out[8] = a[8] - b[8];\n return out;\n}\n/**\n * Multiply each element of the matrix by a scalar.\n *\n * @param {mat3} out the receiving matrix\n * @param {ReadonlyMat3} a the matrix to scale\n * @param {Number} b amount to scale the matrix's elements by\n * @returns {mat3} out\n */\n\nexport function multiplyScalar(out, a, b) {\n out[0] = a[0] * b;\n out[1] = a[1] * b;\n out[2] = a[2] * b;\n out[3] = a[3] * b;\n out[4] = a[4] * b;\n out[5] = a[5] * b;\n out[6] = a[6] * b;\n out[7] = a[7] * b;\n out[8] = a[8] * b;\n return out;\n}\n/**\n * Adds two mat3's after multiplying each element of the second operand by a scalar value.\n *\n * @param {mat3} out the receiving vector\n * @param {ReadonlyMat3} a the first operand\n * @param {ReadonlyMat3} b the second operand\n * @param {Number} scale the amount to scale b's elements by before adding\n * @returns {mat3} out\n */\n\nexport function multiplyScalarAndAdd(out, a, b, scale) {\n out[0] = a[0] + b[0] * scale;\n out[1] = a[1] + b[1] * scale;\n out[2] = a[2] + b[2] * scale;\n out[3] = a[3] + b[3] * scale;\n out[4] = a[4] + b[4] * scale;\n out[5] = a[5] + b[5] * scale;\n out[6] = a[6] + b[6] * scale;\n out[7] = a[7] + b[7] * scale;\n out[8] = a[8] + b[8] * scale;\n return out;\n}\n/**\n * Returns whether or not the matrices have exactly the same elements in the same position (when compared with ===)\n *\n * @param {ReadonlyMat3} a The first matrix.\n * @param {ReadonlyMat3} b The second matrix.\n * @returns {Boolean} True if the matrices are equal, false otherwise.\n */\n\nexport function exactEquals(a, b) {\n return a[0] === b[0] && a[1] === b[1] && a[2] === b[2] && a[3] === b[3] && a[4] === b[4] && a[5] === b[5] && a[6] === b[6] && a[7] === b[7] && a[8] === b[8];\n}\n/**\n * Returns whether or not the matrices have approximately the same elements in the same position.\n *\n * @param {ReadonlyMat3} a The first matrix.\n * @param {ReadonlyMat3} b The second matrix.\n * @returns {Boolean} True if the matrices are equal, false otherwise.\n */\n\nexport function equals(a, b) {\n var a0 = a[0],\n a1 = a[1],\n a2 = a[2],\n a3 = a[3],\n a4 = a[4],\n a5 = a[5],\n a6 = a[6],\n a7 = a[7],\n a8 = a[8];\n var b0 = b[0],\n b1 = b[1],\n b2 = b[2],\n b3 = b[3],\n b4 = b[4],\n b5 = b[5],\n b6 = b[6],\n b7 = b[7],\n b8 = b[8];\n return Math.abs(a0 - b0) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a0), Math.abs(b0)) && Math.abs(a1 - b1) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a1), Math.abs(b1)) && Math.abs(a2 - b2) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a2), Math.abs(b2)) && Math.abs(a3 - b3) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a3), Math.abs(b3)) && Math.abs(a4 - b4) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a4), Math.abs(b4)) && Math.abs(a5 - b5) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a5), Math.abs(b5)) && Math.abs(a6 - b6) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a6), Math.abs(b6)) && Math.abs(a7 - b7) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a7), Math.abs(b7)) && Math.abs(a8 - b8) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a8), Math.abs(b8));\n}\n/**\n * Alias for {@link mat3.multiply}\n * @function\n */\n\nexport var mul = multiply;\n/**\n * Alias for {@link mat3.subtract}\n * @function\n */\n\nexport var sub = subtract;","import * as glMatrix from \"./common.js\";\n/**\n * 3 Dimensional Vector\n * @module vec3\n */\n\n/**\n * Creates a new, empty vec3\n *\n * @returns {vec3} a new 3D vector\n */\n\nexport function create() {\n var out = new glMatrix.ARRAY_TYPE(3);\n\n if (glMatrix.ARRAY_TYPE != Float32Array) {\n out[0] = 0;\n out[1] = 0;\n out[2] = 0;\n }\n\n return out;\n}\n/**\n * Creates a new vec3 initialized with values from an existing vector\n *\n * @param {ReadonlyVec3} a vector to clone\n * @returns {vec3} a new 3D vector\n */\n\nexport function clone(a) {\n var out = new glMatrix.ARRAY_TYPE(3);\n out[0] = a[0];\n out[1] = a[1];\n out[2] = a[2];\n return out;\n}\n/**\n * Calculates the length of a vec3\n *\n * @param {ReadonlyVec3} a vector to calculate length of\n * @returns {Number} length of a\n */\n\nexport function length(a) {\n var x = a[0];\n var y = a[1];\n var z = a[2];\n return Math.hypot(x, y, z);\n}\n/**\n * Creates a new vec3 initialized with the given values\n *\n * @param {Number} x X component\n * @param {Number} y Y component\n * @param {Number} z Z component\n * @returns {vec3} a new 3D vector\n */\n\nexport function fromValues(x, y, z) {\n var out = new glMatrix.ARRAY_TYPE(3);\n out[0] = x;\n out[1] = y;\n out[2] = z;\n return out;\n}\n/**\n * Copy the values from one vec3 to another\n *\n * @param {vec3} out the receiving vector\n * @param {ReadonlyVec3} a the source vector\n * @returns {vec3} out\n */\n\nexport function copy(out, a) {\n out[0] = a[0];\n out[1] = a[1];\n out[2] = a[2];\n return out;\n}\n/**\n * Set the components of a vec3 to the given values\n *\n * @param {vec3} out the receiving vector\n * @param {Number} x X component\n * @param {Number} y Y component\n * @param {Number} z Z component\n * @returns {vec3} out\n */\n\nexport function set(out, x, y, z) {\n out[0] = x;\n out[1] = y;\n out[2] = z;\n return out;\n}\n/**\n * Adds two vec3's\n *\n * @param {vec3} out the receiving vector\n * @param {ReadonlyVec3} a the first operand\n * @param {ReadonlyVec3} b the second operand\n * @returns {vec3} out\n */\n\nexport function add(out, a, b) {\n out[0] = a[0] + b[0];\n out[1] = a[1] + b[1];\n out[2] = a[2] + b[2];\n return out;\n}\n/**\n * Subtracts vector b from vector a\n *\n * @param {vec3} out the receiving vector\n * @param {ReadonlyVec3} a the first operand\n * @param {ReadonlyVec3} b the second operand\n * @returns {vec3} out\n */\n\nexport function subtract(out, a, b) {\n out[0] = a[0] - b[0];\n out[1] = a[1] - b[1];\n out[2] = a[2] - b[2];\n return out;\n}\n/**\n * Multiplies two vec3's\n *\n * @param {vec3} out the receiving vector\n * @param {ReadonlyVec3} a the first operand\n * @param {ReadonlyVec3} b the second operand\n * @returns {vec3} out\n */\n\nexport function multiply(out, a, b) {\n out[0] = a[0] * b[0];\n out[1] = a[1] * b[1];\n out[2] = a[2] * b[2];\n return out;\n}\n/**\n * Divides two vec3's\n *\n * @param {vec3} out the receiving vector\n * @param {ReadonlyVec3} a the first operand\n * @param {ReadonlyVec3} b the second operand\n * @returns {vec3} out\n */\n\nexport function divide(out, a, b) {\n out[0] = a[0] / b[0];\n out[1] = a[1] / b[1];\n out[2] = a[2] / b[2];\n return out;\n}\n/**\n * Math.ceil the components of a vec3\n *\n * @param {vec3} out the receiving vector\n * @param {ReadonlyVec3} a vector to ceil\n * @returns {vec3} out\n */\n\nexport function ceil(out, a) {\n out[0] = Math.ceil(a[0]);\n out[1] = Math.ceil(a[1]);\n out[2] = Math.ceil(a[2]);\n return out;\n}\n/**\n * Math.floor the components of a vec3\n *\n * @param {vec3} out the receiving vector\n * @param {ReadonlyVec3} a vector to floor\n * @returns {vec3} out\n */\n\nexport function floor(out, a) {\n out[0] = Math.floor(a[0]);\n out[1] = Math.floor(a[1]);\n out[2] = Math.floor(a[2]);\n return out;\n}\n/**\n * Returns the minimum of two vec3's\n *\n * @param {vec3} out the receiving vector\n * @param {ReadonlyVec3} a the first operand\n * @param {ReadonlyVec3} b the second operand\n * @returns {vec3} out\n */\n\nexport function min(out, a, b) {\n out[0] = Math.min(a[0], b[0]);\n out[1] = Math.min(a[1], b[1]);\n out[2] = Math.min(a[2], b[2]);\n return out;\n}\n/**\n * Returns the maximum of two vec3's\n *\n * @param {vec3} out the receiving vector\n * @param {ReadonlyVec3} a the first operand\n * @param {ReadonlyVec3} b the second operand\n * @returns {vec3} out\n */\n\nexport function max(out, a, b) {\n out[0] = Math.max(a[0], b[0]);\n out[1] = Math.max(a[1], b[1]);\n out[2] = Math.max(a[2], b[2]);\n return out;\n}\n/**\n * Math.round the components of a vec3\n *\n * @param {vec3} out the receiving vector\n * @param {ReadonlyVec3} a vector to round\n * @returns {vec3} out\n */\n\nexport function round(out, a) {\n out[0] = Math.round(a[0]);\n out[1] = Math.round(a[1]);\n out[2] = Math.round(a[2]);\n return out;\n}\n/**\n * Scales a vec3 by a scalar number\n *\n * @param {vec3} out the receiving vector\n * @param {ReadonlyVec3} a the vector to scale\n * @param {Number} b amount to scale the vector by\n * @returns {vec3} out\n */\n\nexport function scale(out, a, b) {\n out[0] = a[0] * b;\n out[1] = a[1] * b;\n out[2] = a[2] * b;\n return out;\n}\n/**\n * Adds two vec3's after scaling the second operand by a scalar value\n *\n * @param {vec3} out the receiving vector\n * @param {ReadonlyVec3} a the first operand\n * @param {ReadonlyVec3} b the second operand\n * @param {Number} scale the amount to scale b by before adding\n * @returns {vec3} out\n */\n\nexport function scaleAndAdd(out, a, b, scale) {\n out[0] = a[0] + b[0] * scale;\n out[1] = a[1] + b[1] * scale;\n out[2] = a[2] + b[2] * scale;\n return out;\n}\n/**\n * Calculates the euclidian distance between two vec3's\n *\n * @param {ReadonlyVec3} a the first operand\n * @param {ReadonlyVec3} b the second operand\n * @returns {Number} distance between a and b\n */\n\nexport function distance(a, b) {\n var x = b[0] - a[0];\n var y = b[1] - a[1];\n var z = b[2] - a[2];\n return Math.hypot(x, y, z);\n}\n/**\n * Calculates the squared euclidian distance between two vec3's\n *\n * @param {ReadonlyVec3} a the first operand\n * @param {ReadonlyVec3} b the second operand\n * @returns {Number} squared distance between a and b\n */\n\nexport function squaredDistance(a, b) {\n var x = b[0] - a[0];\n var y = b[1] - a[1];\n var z = b[2] - a[2];\n return x * x + y * y + z * z;\n}\n/**\n * Calculates the squared length of a vec3\n *\n * @param {ReadonlyVec3} a vector to calculate squared length of\n * @returns {Number} squared length of a\n */\n\nexport function squaredLength(a) {\n var x = a[0];\n var y = a[1];\n var z = a[2];\n return x * x + y * y + z * z;\n}\n/**\n * Negates the components of a vec3\n *\n * @param {vec3} out the receiving vector\n * @param {ReadonlyVec3} a vector to negate\n * @returns {vec3} out\n */\n\nexport function negate(out, a) {\n out[0] = -a[0];\n out[1] = -a[1];\n out[2] = -a[2];\n return out;\n}\n/**\n * Returns the inverse of the components of a vec3\n *\n * @param {vec3} out the receiving vector\n * @param {ReadonlyVec3} a vector to invert\n * @returns {vec3} out\n */\n\nexport function inverse(out, a) {\n out[0] = 1.0 / a[0];\n out[1] = 1.0 / a[1];\n out[2] = 1.0 / a[2];\n return out;\n}\n/**\n * Normalize a vec3\n *\n * @param {vec3} out the receiving vector\n * @param {ReadonlyVec3} a vector to normalize\n * @returns {vec3} out\n */\n\nexport function normalize(out, a) {\n var x = a[0];\n var y = a[1];\n var z = a[2];\n var len = x * x + y * y + z * z;\n\n if (len > 0) {\n //TODO: evaluate use of glm_invsqrt here?\n len = 1 / Math.sqrt(len);\n }\n\n out[0] = a[0] * len;\n out[1] = a[1] * len;\n out[2] = a[2] * len;\n return out;\n}\n/**\n * Calculates the dot product of two vec3's\n *\n * @param {ReadonlyVec3} a the first operand\n * @param {ReadonlyVec3} b the second operand\n * @returns {Number} dot product of a and b\n */\n\nexport function dot(a, b) {\n return a[0] * b[0] + a[1] * b[1] + a[2] * b[2];\n}\n/**\n * Computes the cross product of two vec3's\n *\n * @param {vec3} out the receiving vector\n * @param {ReadonlyVec3} a the first operand\n * @param {ReadonlyVec3} b the second operand\n * @returns {vec3} out\n */\n\nexport function cross(out, a, b) {\n var ax = a[0],\n ay = a[1],\n az = a[2];\n var bx = b[0],\n by = b[1],\n bz = b[2];\n out[0] = ay * bz - az * by;\n out[1] = az * bx - ax * bz;\n out[2] = ax * by - ay * bx;\n return out;\n}\n/**\n * Performs a linear interpolation between two vec3's\n *\n * @param {vec3} out the receiving vector\n * @param {ReadonlyVec3} a the first operand\n * @param {ReadonlyVec3} b the second operand\n * @param {Number} t interpolation amount, in the range [0-1], between the two inputs\n * @returns {vec3} out\n */\n\nexport function lerp(out, a, b, t) {\n var ax = a[0];\n var ay = a[1];\n var az = a[2];\n out[0] = ax + t * (b[0] - ax);\n out[1] = ay + t * (b[1] - ay);\n out[2] = az + t * (b[2] - az);\n return out;\n}\n/**\n * Performs a hermite interpolation with two control points\n *\n * @param {vec3} out the receiving vector\n * @param {ReadonlyVec3} a the first operand\n * @param {ReadonlyVec3} b the second operand\n * @param {ReadonlyVec3} c the third operand\n * @param {ReadonlyVec3} d the fourth operand\n * @param {Number} t interpolation amount, in the range [0-1], between the two inputs\n * @returns {vec3} out\n */\n\nexport function hermite(out, a, b, c, d, t) {\n var factorTimes2 = t * t;\n var factor1 = factorTimes2 * (2 * t - 3) + 1;\n var factor2 = factorTimes2 * (t - 2) + t;\n var factor3 = factorTimes2 * (t - 1);\n var factor4 = factorTimes2 * (3 - 2 * t);\n out[0] = a[0] * factor1 + b[0] * factor2 + c[0] * factor3 + d[0] * factor4;\n out[1] = a[1] * factor1 + b[1] * factor2 + c[1] * factor3 + d[1] * factor4;\n out[2] = a[2] * factor1 + b[2] * factor2 + c[2] * factor3 + d[2] * factor4;\n return out;\n}\n/**\n * Performs a bezier interpolation with two control points\n *\n * @param {vec3} out the receiving vector\n * @param {ReadonlyVec3} a the first operand\n * @param {ReadonlyVec3} b the second operand\n * @param {ReadonlyVec3} c the third operand\n * @param {ReadonlyVec3} d the fourth operand\n * @param {Number} t interpolation amount, in the range [0-1], between the two inputs\n * @returns {vec3} out\n */\n\nexport function bezier(out, a, b, c, d, t) {\n var inverseFactor = 1 - t;\n var inverseFactorTimesTwo = inverseFactor * inverseFactor;\n var factorTimes2 = t * t;\n var factor1 = inverseFactorTimesTwo * inverseFactor;\n var factor2 = 3 * t * inverseFactorTimesTwo;\n var factor3 = 3 * factorTimes2 * inverseFactor;\n var factor4 = factorTimes2 * t;\n out[0] = a[0] * factor1 + b[0] * factor2 + c[0] * factor3 + d[0] * factor4;\n out[1] = a[1] * factor1 + b[1] * factor2 + c[1] * factor3 + d[1] * factor4;\n out[2] = a[2] * factor1 + b[2] * factor2 + c[2] * factor3 + d[2] * factor4;\n return out;\n}\n/**\n * Generates a random vector with the given scale\n *\n * @param {vec3} out the receiving vector\n * @param {Number} [scale] Length of the resulting vector. If ommitted, a unit vector will be returned\n * @returns {vec3} out\n */\n\nexport function random(out, scale) {\n scale = scale || 1.0;\n var r = glMatrix.RANDOM() * 2.0 * Math.PI;\n var z = glMatrix.RANDOM() * 2.0 - 1.0;\n var zScale = Math.sqrt(1.0 - z * z) * scale;\n out[0] = Math.cos(r) * zScale;\n out[1] = Math.sin(r) * zScale;\n out[2] = z * scale;\n return out;\n}\n/**\n * Transforms the vec3 with a mat4.\n * 4th vector component is implicitly '1'\n *\n * @param {vec3} out the receiving vector\n * @param {ReadonlyVec3} a the vector to transform\n * @param {ReadonlyMat4} m matrix to transform with\n * @returns {vec3} out\n */\n\nexport function transformMat4(out, a, m) {\n var x = a[0],\n y = a[1],\n z = a[2];\n var w = m[3] * x + m[7] * y + m[11] * z + m[15];\n w = w || 1.0;\n out[0] = (m[0] * x + m[4] * y + m[8] * z + m[12]) / w;\n out[1] = (m[1] * x + m[5] * y + m[9] * z + m[13]) / w;\n out[2] = (m[2] * x + m[6] * y + m[10] * z + m[14]) / w;\n return out;\n}\n/**\n * Transforms the vec3 with a mat3.\n *\n * @param {vec3} out the receiving vector\n * @param {ReadonlyVec3} a the vector to transform\n * @param {ReadonlyMat3} m the 3x3 matrix to transform with\n * @returns {vec3} out\n */\n\nexport function transformMat3(out, a, m) {\n var x = a[0],\n y = a[1],\n z = a[2];\n out[0] = x * m[0] + y * m[3] + z * m[6];\n out[1] = x * m[1] + y * m[4] + z * m[7];\n out[2] = x * m[2] + y * m[5] + z * m[8];\n return out;\n}\n/**\n * Transforms the vec3 with a quat\n * Can also be used for dual quaternions. (Multiply it with the real part)\n *\n * @param {vec3} out the receiving vector\n * @param {ReadonlyVec3} a the vector to transform\n * @param {ReadonlyQuat} q quaternion to transform with\n * @returns {vec3} out\n */\n\nexport function transformQuat(out, a, q) {\n // benchmarks: https://jsperf.com/quaternion-transform-vec3-implementations-fixed\n var qx = q[0],\n qy = q[1],\n qz = q[2],\n qw = q[3];\n var x = a[0],\n y = a[1],\n z = a[2]; // var qvec = [qx, qy, qz];\n // var uv = vec3.cross([], qvec, a);\n\n var uvx = qy * z - qz * y,\n uvy = qz * x - qx * z,\n uvz = qx * y - qy * x; // var uuv = vec3.cross([], qvec, uv);\n\n var uuvx = qy * uvz - qz * uvy,\n uuvy = qz * uvx - qx * uvz,\n uuvz = qx * uvy - qy * uvx; // vec3.scale(uv, uv, 2 * w);\n\n var w2 = qw * 2;\n uvx *= w2;\n uvy *= w2;\n uvz *= w2; // vec3.scale(uuv, uuv, 2);\n\n uuvx *= 2;\n uuvy *= 2;\n uuvz *= 2; // return vec3.add(out, a, vec3.add(out, uv, uuv));\n\n out[0] = x + uvx + uuvx;\n out[1] = y + uvy + uuvy;\n out[2] = z + uvz + uuvz;\n return out;\n}\n/**\n * Rotate a 3D vector around the x-axis\n * @param {vec3} out The receiving vec3\n * @param {ReadonlyVec3} a The vec3 point to rotate\n * @param {ReadonlyVec3} b The origin of the rotation\n * @param {Number} rad The angle of rotation in radians\n * @returns {vec3} out\n */\n\nexport function rotateX(out, a, b, rad) {\n var p = [],\n r = []; //Translate point to the origin\n\n p[0] = a[0] - b[0];\n p[1] = a[1] - b[1];\n p[2] = a[2] - b[2]; //perform rotation\n\n r[0] = p[0];\n r[1] = p[1] * Math.cos(rad) - p[2] * Math.sin(rad);\n r[2] = p[1] * Math.sin(rad) + p[2] * Math.cos(rad); //translate to correct position\n\n out[0] = r[0] + b[0];\n out[1] = r[1] + b[1];\n out[2] = r[2] + b[2];\n return out;\n}\n/**\n * Rotate a 3D vector around the y-axis\n * @param {vec3} out The receiving vec3\n * @param {ReadonlyVec3} a The vec3 point to rotate\n * @param {ReadonlyVec3} b The origin of the rotation\n * @param {Number} rad The angle of rotation in radians\n * @returns {vec3} out\n */\n\nexport function rotateY(out, a, b, rad) {\n var p = [],\n r = []; //Translate point to the origin\n\n p[0] = a[0] - b[0];\n p[1] = a[1] - b[1];\n p[2] = a[2] - b[2]; //perform rotation\n\n r[0] = p[2] * Math.sin(rad) + p[0] * Math.cos(rad);\n r[1] = p[1];\n r[2] = p[2] * Math.cos(rad) - p[0] * Math.sin(rad); //translate to correct position\n\n out[0] = r[0] + b[0];\n out[1] = r[1] + b[1];\n out[2] = r[2] + b[2];\n return out;\n}\n/**\n * Rotate a 3D vector around the z-axis\n * @param {vec3} out The receiving vec3\n * @param {ReadonlyVec3} a The vec3 point to rotate\n * @param {ReadonlyVec3} b The origin of the rotation\n * @param {Number} rad The angle of rotation in radians\n * @returns {vec3} out\n */\n\nexport function rotateZ(out, a, b, rad) {\n var p = [],\n r = []; //Translate point to the origin\n\n p[0] = a[0] - b[0];\n p[1] = a[1] - b[1];\n p[2] = a[2] - b[2]; //perform rotation\n\n r[0] = p[0] * Math.cos(rad) - p[1] * Math.sin(rad);\n r[1] = p[0] * Math.sin(rad) + p[1] * Math.cos(rad);\n r[2] = p[2]; //translate to correct position\n\n out[0] = r[0] + b[0];\n out[1] = r[1] + b[1];\n out[2] = r[2] + b[2];\n return out;\n}\n/**\n * Get the angle between two 3D vectors\n * @param {ReadonlyVec3} a The first operand\n * @param {ReadonlyVec3} b The second operand\n * @returns {Number} The angle in radians\n */\n\nexport function angle(a, b) {\n var ax = a[0],\n ay = a[1],\n az = a[2],\n bx = b[0],\n by = b[1],\n bz = b[2],\n mag1 = Math.sqrt(ax * ax + ay * ay + az * az),\n mag2 = Math.sqrt(bx * bx + by * by + bz * bz),\n mag = mag1 * mag2,\n cosine = mag && dot(a, b) / mag;\n return Math.acos(Math.min(Math.max(cosine, -1), 1));\n}\n/**\n * Set the components of a vec3 to zero\n *\n * @param {vec3} out the receiving vector\n * @returns {vec3} out\n */\n\nexport function zero(out) {\n out[0] = 0.0;\n out[1] = 0.0;\n out[2] = 0.0;\n return out;\n}\n/**\n * Returns a string representation of a vector\n *\n * @param {ReadonlyVec3} a vector to represent as a string\n * @returns {String} string representation of the vector\n */\n\nexport function str(a) {\n return \"vec3(\" + a[0] + \", \" + a[1] + \", \" + a[2] + \")\";\n}\n/**\n * Returns whether or not the vectors have exactly the same elements in the same position (when compared with ===)\n *\n * @param {ReadonlyVec3} a The first vector.\n * @param {ReadonlyVec3} b The second vector.\n * @returns {Boolean} True if the vectors are equal, false otherwise.\n */\n\nexport function exactEquals(a, b) {\n return a[0] === b[0] && a[1] === b[1] && a[2] === b[2];\n}\n/**\n * Returns whether or not the vectors have approximately the same elements in the same position.\n *\n * @param {ReadonlyVec3} a The first vector.\n * @param {ReadonlyVec3} b The second vector.\n * @returns {Boolean} True if the vectors are equal, false otherwise.\n */\n\nexport function equals(a, b) {\n var a0 = a[0],\n a1 = a[1],\n a2 = a[2];\n var b0 = b[0],\n b1 = b[1],\n b2 = b[2];\n return Math.abs(a0 - b0) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a0), Math.abs(b0)) && Math.abs(a1 - b1) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a1), Math.abs(b1)) && Math.abs(a2 - b2) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a2), Math.abs(b2));\n}\n/**\n * Alias for {@link vec3.subtract}\n * @function\n */\n\nexport var sub = subtract;\n/**\n * Alias for {@link vec3.multiply}\n * @function\n */\n\nexport var mul = multiply;\n/**\n * Alias for {@link vec3.divide}\n * @function\n */\n\nexport var div = divide;\n/**\n * Alias for {@link vec3.distance}\n * @function\n */\n\nexport var dist = distance;\n/**\n * Alias for {@link vec3.squaredDistance}\n * @function\n */\n\nexport var sqrDist = squaredDistance;\n/**\n * Alias for {@link vec3.length}\n * @function\n */\n\nexport var len = length;\n/**\n * Alias for {@link vec3.squaredLength}\n * @function\n */\n\nexport var sqrLen = squaredLength;\n/**\n * Perform some operation over an array of vec3s.\n *\n * @param {Array} a the array of vectors to iterate over\n * @param {Number} stride Number of elements between the start of each vec3. If 0 assumes tightly packed\n * @param {Number} offset Number of elements to skip at the beginning of the array\n * @param {Number} count Number of vec3s to iterate over. If 0 iterates over entire array\n * @param {Function} fn Function to call for each vector in the array\n * @param {Object} [arg] additional argument to pass to fn\n * @returns {Array} a\n * @function\n */\n\nexport var forEach = function () {\n var vec = create();\n return function (a, stride, offset, count, fn, arg) {\n var i, l;\n\n if (!stride) {\n stride = 3;\n }\n\n if (!offset) {\n offset = 0;\n }\n\n if (count) {\n l = Math.min(count * stride + offset, a.length);\n } else {\n l = a.length;\n }\n\n for (i = offset; i < l; i += stride) {\n vec[0] = a[i];\n vec[1] = a[i + 1];\n vec[2] = a[i + 2];\n fn(vec, vec, arg);\n a[i] = vec[0];\n a[i + 1] = vec[1];\n a[i + 2] = vec[2];\n }\n\n return a;\n };\n}();","import * as glMatrix from \"./common.js\";\n/**\n * 2 Dimensional Vector\n * @module vec2\n */\n\n/**\n * Creates a new, empty vec2\n *\n * @returns {vec2} a new 2D vector\n */\n\nexport function create() {\n var out = new glMatrix.ARRAY_TYPE(2);\n\n if (glMatrix.ARRAY_TYPE != Float32Array) {\n out[0] = 0;\n out[1] = 0;\n }\n\n return out;\n}\n/**\n * Creates a new vec2 initialized with values from an existing vector\n *\n * @param {ReadonlyVec2} a vector to clone\n * @returns {vec2} a new 2D vector\n */\n\nexport function clone(a) {\n var out = new glMatrix.ARRAY_TYPE(2);\n out[0] = a[0];\n out[1] = a[1];\n return out;\n}\n/**\n * Creates a new vec2 initialized with the given values\n *\n * @param {Number} x X component\n * @param {Number} y Y component\n * @returns {vec2} a new 2D vector\n */\n\nexport function fromValues(x, y) {\n var out = new glMatrix.ARRAY_TYPE(2);\n out[0] = x;\n out[1] = y;\n return out;\n}\n/**\n * Copy the values from one vec2 to another\n *\n * @param {vec2} out the receiving vector\n * @param {ReadonlyVec2} a the source vector\n * @returns {vec2} out\n */\n\nexport function copy(out, a) {\n out[0] = a[0];\n out[1] = a[1];\n return out;\n}\n/**\n * Set the components of a vec2 to the given values\n *\n * @param {vec2} out the receiving vector\n * @param {Number} x X component\n * @param {Number} y Y component\n * @returns {vec2} out\n */\n\nexport function set(out, x, y) {\n out[0] = x;\n out[1] = y;\n return out;\n}\n/**\n * Adds two vec2's\n *\n * @param {vec2} out the receiving vector\n * @param {ReadonlyVec2} a the first operand\n * @param {ReadonlyVec2} b the second operand\n * @returns {vec2} out\n */\n\nexport function add(out, a, b) {\n out[0] = a[0] + b[0];\n out[1] = a[1] + b[1];\n return out;\n}\n/**\n * Subtracts vector b from vector a\n *\n * @param {vec2} out the receiving vector\n * @param {ReadonlyVec2} a the first operand\n * @param {ReadonlyVec2} b the second operand\n * @returns {vec2} out\n */\n\nexport function subtract(out, a, b) {\n out[0] = a[0] - b[0];\n out[1] = a[1] - b[1];\n return out;\n}\n/**\n * Multiplies two vec2's\n *\n * @param {vec2} out the receiving vector\n * @param {ReadonlyVec2} a the first operand\n * @param {ReadonlyVec2} b the second operand\n * @returns {vec2} out\n */\n\nexport function multiply(out, a, b) {\n out[0] = a[0] * b[0];\n out[1] = a[1] * b[1];\n return out;\n}\n/**\n * Divides two vec2's\n *\n * @param {vec2} out the receiving vector\n * @param {ReadonlyVec2} a the first operand\n * @param {ReadonlyVec2} b the second operand\n * @returns {vec2} out\n */\n\nexport function divide(out, a, b) {\n out[0] = a[0] / b[0];\n out[1] = a[1] / b[1];\n return out;\n}\n/**\n * Math.ceil the components of a vec2\n *\n * @param {vec2} out the receiving vector\n * @param {ReadonlyVec2} a vector to ceil\n * @returns {vec2} out\n */\n\nexport function ceil(out, a) {\n out[0] = Math.ceil(a[0]);\n out[1] = Math.ceil(a[1]);\n return out;\n}\n/**\n * Math.floor the components of a vec2\n *\n * @param {vec2} out the receiving vector\n * @param {ReadonlyVec2} a vector to floor\n * @returns {vec2} out\n */\n\nexport function floor(out, a) {\n out[0] = Math.floor(a[0]);\n out[1] = Math.floor(a[1]);\n return out;\n}\n/**\n * Returns the minimum of two vec2's\n *\n * @param {vec2} out the receiving vector\n * @param {ReadonlyVec2} a the first operand\n * @param {ReadonlyVec2} b the second operand\n * @returns {vec2} out\n */\n\nexport function min(out, a, b) {\n out[0] = Math.min(a[0], b[0]);\n out[1] = Math.min(a[1], b[1]);\n return out;\n}\n/**\n * Returns the maximum of two vec2's\n *\n * @param {vec2} out the receiving vector\n * @param {ReadonlyVec2} a the first operand\n * @param {ReadonlyVec2} b the second operand\n * @returns {vec2} out\n */\n\nexport function max(out, a, b) {\n out[0] = Math.max(a[0], b[0]);\n out[1] = Math.max(a[1], b[1]);\n return out;\n}\n/**\n * Math.round the components of a vec2\n *\n * @param {vec2} out the receiving vector\n * @param {ReadonlyVec2} a vector to round\n * @returns {vec2} out\n */\n\nexport function round(out, a) {\n out[0] = Math.round(a[0]);\n out[1] = Math.round(a[1]);\n return out;\n}\n/**\n * Scales a vec2 by a scalar number\n *\n * @param {vec2} out the receiving vector\n * @param {ReadonlyVec2} a the vector to scale\n * @param {Number} b amount to scale the vector by\n * @returns {vec2} out\n */\n\nexport function scale(out, a, b) {\n out[0] = a[0] * b;\n out[1] = a[1] * b;\n return out;\n}\n/**\n * Adds two vec2's after scaling the second operand by a scalar value\n *\n * @param {vec2} out the receiving vector\n * @param {ReadonlyVec2} a the first operand\n * @param {ReadonlyVec2} b the second operand\n * @param {Number} scale the amount to scale b by before adding\n * @returns {vec2} out\n */\n\nexport function scaleAndAdd(out, a, b, scale) {\n out[0] = a[0] + b[0] * scale;\n out[1] = a[1] + b[1] * scale;\n return out;\n}\n/**\n * Calculates the euclidian distance between two vec2's\n *\n * @param {ReadonlyVec2} a the first operand\n * @param {ReadonlyVec2} b the second operand\n * @returns {Number} distance between a and b\n */\n\nexport function distance(a, b) {\n var x = b[0] - a[0],\n y = b[1] - a[1];\n return Math.hypot(x, y);\n}\n/**\n * Calculates the squared euclidian distance between two vec2's\n *\n * @param {ReadonlyVec2} a the first operand\n * @param {ReadonlyVec2} b the second operand\n * @returns {Number} squared distance between a and b\n */\n\nexport function squaredDistance(a, b) {\n var x = b[0] - a[0],\n y = b[1] - a[1];\n return x * x + y * y;\n}\n/**\n * Calculates the length of a vec2\n *\n * @param {ReadonlyVec2} a vector to calculate length of\n * @returns {Number} length of a\n */\n\nexport function length(a) {\n var x = a[0],\n y = a[1];\n return Math.hypot(x, y);\n}\n/**\n * Calculates the squared length of a vec2\n *\n * @param {ReadonlyVec2} a vector to calculate squared length of\n * @returns {Number} squared length of a\n */\n\nexport function squaredLength(a) {\n var x = a[0],\n y = a[1];\n return x * x + y * y;\n}\n/**\n * Negates the components of a vec2\n *\n * @param {vec2} out the receiving vector\n * @param {ReadonlyVec2} a vector to negate\n * @returns {vec2} out\n */\n\nexport function negate(out, a) {\n out[0] = -a[0];\n out[1] = -a[1];\n return out;\n}\n/**\n * Returns the inverse of the components of a vec2\n *\n * @param {vec2} out the receiving vector\n * @param {ReadonlyVec2} a vector to invert\n * @returns {vec2} out\n */\n\nexport function inverse(out, a) {\n out[0] = 1.0 / a[0];\n out[1] = 1.0 / a[1];\n return out;\n}\n/**\n * Normalize a vec2\n *\n * @param {vec2} out the receiving vector\n * @param {ReadonlyVec2} a vector to normalize\n * @returns {vec2} out\n */\n\nexport function normalize(out, a) {\n var x = a[0],\n y = a[1];\n var len = x * x + y * y;\n\n if (len > 0) {\n //TODO: evaluate use of glm_invsqrt here?\n len = 1 / Math.sqrt(len);\n }\n\n out[0] = a[0] * len;\n out[1] = a[1] * len;\n return out;\n}\n/**\n * Calculates the dot product of two vec2's\n *\n * @param {ReadonlyVec2} a the first operand\n * @param {ReadonlyVec2} b the second operand\n * @returns {Number} dot product of a and b\n */\n\nexport function dot(a, b) {\n return a[0] * b[0] + a[1] * b[1];\n}\n/**\n * Computes the cross product of two vec2's\n * Note that the cross product must by definition produce a 3D vector\n *\n * @param {vec3} out the receiving vector\n * @param {ReadonlyVec2} a the first operand\n * @param {ReadonlyVec2} b the second operand\n * @returns {vec3} out\n */\n\nexport function cross(out, a, b) {\n var z = a[0] * b[1] - a[1] * b[0];\n out[0] = out[1] = 0;\n out[2] = z;\n return out;\n}\n/**\n * Performs a linear interpolation between two vec2's\n *\n * @param {vec2} out the receiving vector\n * @param {ReadonlyVec2} a the first operand\n * @param {ReadonlyVec2} b the second operand\n * @param {Number} t interpolation amount, in the range [0-1], between the two inputs\n * @returns {vec2} out\n */\n\nexport function lerp(out, a, b, t) {\n var ax = a[0],\n ay = a[1];\n out[0] = ax + t * (b[0] - ax);\n out[1] = ay + t * (b[1] - ay);\n return out;\n}\n/**\n * Generates a random vector with the given scale\n *\n * @param {vec2} out the receiving vector\n * @param {Number} [scale] Length of the resulting vector. If ommitted, a unit vector will be returned\n * @returns {vec2} out\n */\n\nexport function random(out, scale) {\n scale = scale || 1.0;\n var r = glMatrix.RANDOM() * 2.0 * Math.PI;\n out[0] = Math.cos(r) * scale;\n out[1] = Math.sin(r) * scale;\n return out;\n}\n/**\n * Transforms the vec2 with a mat2\n *\n * @param {vec2} out the receiving vector\n * @param {ReadonlyVec2} a the vector to transform\n * @param {ReadonlyMat2} m matrix to transform with\n * @returns {vec2} out\n */\n\nexport function transformMat2(out, a, m) {\n var x = a[0],\n y = a[1];\n out[0] = m[0] * x + m[2] * y;\n out[1] = m[1] * x + m[3] * y;\n return out;\n}\n/**\n * Transforms the vec2 with a mat2d\n *\n * @param {vec2} out the receiving vector\n * @param {ReadonlyVec2} a the vector to transform\n * @param {ReadonlyMat2d} m matrix to transform with\n * @returns {vec2} out\n */\n\nexport function transformMat2d(out, a, m) {\n var x = a[0],\n y = a[1];\n out[0] = m[0] * x + m[2] * y + m[4];\n out[1] = m[1] * x + m[3] * y + m[5];\n return out;\n}\n/**\n * Transforms the vec2 with a mat3\n * 3rd vector component is implicitly '1'\n *\n * @param {vec2} out the receiving vector\n * @param {ReadonlyVec2} a the vector to transform\n * @param {ReadonlyMat3} m matrix to transform with\n * @returns {vec2} out\n */\n\nexport function transformMat3(out, a, m) {\n var x = a[0],\n y = a[1];\n out[0] = m[0] * x + m[3] * y + m[6];\n out[1] = m[1] * x + m[4] * y + m[7];\n return out;\n}\n/**\n * Transforms the vec2 with a mat4\n * 3rd vector component is implicitly '0'\n * 4th vector component is implicitly '1'\n *\n * @param {vec2} out the receiving vector\n * @param {ReadonlyVec2} a the vector to transform\n * @param {ReadonlyMat4} m matrix to transform with\n * @returns {vec2} out\n */\n\nexport function transformMat4(out, a, m) {\n var x = a[0];\n var y = a[1];\n out[0] = m[0] * x + m[4] * y + m[12];\n out[1] = m[1] * x + m[5] * y + m[13];\n return out;\n}\n/**\n * Rotate a 2D vector\n * @param {vec2} out The receiving vec2\n * @param {ReadonlyVec2} a The vec2 point to rotate\n * @param {ReadonlyVec2} b The origin of the rotation\n * @param {Number} rad The angle of rotation in radians\n * @returns {vec2} out\n */\n\nexport function rotate(out, a, b, rad) {\n //Translate point to the origin\n var p0 = a[0] - b[0],\n p1 = a[1] - b[1],\n sinC = Math.sin(rad),\n cosC = Math.cos(rad); //perform rotation and translate to correct position\n\n out[0] = p0 * cosC - p1 * sinC + b[0];\n out[1] = p0 * sinC + p1 * cosC + b[1];\n return out;\n}\n/**\n * Get the angle between two 2D vectors\n * @param {ReadonlyVec2} a The first operand\n * @param {ReadonlyVec2} b The second operand\n * @returns {Number} The angle in radians\n */\n\nexport function angle(a, b) {\n var x1 = a[0],\n y1 = a[1],\n x2 = b[0],\n y2 = b[1],\n // mag is the product of the magnitudes of a and b\n mag = Math.sqrt(x1 * x1 + y1 * y1) * Math.sqrt(x2 * x2 + y2 * y2),\n // mag &&.. short circuits if mag == 0\n cosine = mag && (x1 * x2 + y1 * y2) / mag; // Math.min(Math.max(cosine, -1), 1) clamps the cosine between -1 and 1\n\n return Math.acos(Math.min(Math.max(cosine, -1), 1));\n}\n/**\n * Set the components of a vec2 to zero\n *\n * @param {vec2} out the receiving vector\n * @returns {vec2} out\n */\n\nexport function zero(out) {\n out[0] = 0.0;\n out[1] = 0.0;\n return out;\n}\n/**\n * Returns a string representation of a vector\n *\n * @param {ReadonlyVec2} a vector to represent as a string\n * @returns {String} string representation of the vector\n */\n\nexport function str(a) {\n return \"vec2(\" + a[0] + \", \" + a[1] + \")\";\n}\n/**\n * Returns whether or not the vectors exactly have the same elements in the same position (when compared with ===)\n *\n * @param {ReadonlyVec2} a The first vector.\n * @param {ReadonlyVec2} b The second vector.\n * @returns {Boolean} True if the vectors are equal, false otherwise.\n */\n\nexport function exactEquals(a, b) {\n return a[0] === b[0] && a[1] === b[1];\n}\n/**\n * Returns whether or not the vectors have approximately the same elements in the same position.\n *\n * @param {ReadonlyVec2} a The first vector.\n * @param {ReadonlyVec2} b The second vector.\n * @returns {Boolean} True if the vectors are equal, false otherwise.\n */\n\nexport function equals(a, b) {\n var a0 = a[0],\n a1 = a[1];\n var b0 = b[0],\n b1 = b[1];\n return Math.abs(a0 - b0) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a0), Math.abs(b0)) && Math.abs(a1 - b1) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a1), Math.abs(b1));\n}\n/**\n * Alias for {@link vec2.length}\n * @function\n */\n\nexport var len = length;\n/**\n * Alias for {@link vec2.subtract}\n * @function\n */\n\nexport var sub = subtract;\n/**\n * Alias for {@link vec2.multiply}\n * @function\n */\n\nexport var mul = multiply;\n/**\n * Alias for {@link vec2.divide}\n * @function\n */\n\nexport var div = divide;\n/**\n * Alias for {@link vec2.distance}\n * @function\n */\n\nexport var dist = distance;\n/**\n * Alias for {@link vec2.squaredDistance}\n * @function\n */\n\nexport var sqrDist = squaredDistance;\n/**\n * Alias for {@link vec2.squaredLength}\n * @function\n */\n\nexport var sqrLen = squaredLength;\n/**\n * Perform some operation over an array of vec2s.\n *\n * @param {Array} a the array of vectors to iterate over\n * @param {Number} stride Number of elements between the start of each vec2. If 0 assumes tightly packed\n * @param {Number} offset Number of elements to skip at the beginning of the array\n * @param {Number} count Number of vec2s to iterate over. If 0 iterates over entire array\n * @param {Function} fn Function to call for each vector in the array\n * @param {Object} [arg] additional argument to pass to fn\n * @returns {Array} a\n * @function\n */\n\nexport var forEach = function () {\n var vec = create();\n return function (a, stride, offset, count, fn, arg) {\n var i, l;\n\n if (!stride) {\n stride = 2;\n }\n\n if (!offset) {\n offset = 0;\n }\n\n if (count) {\n l = Math.min(count * stride + offset, a.length);\n } else {\n l = a.length;\n }\n\n for (i = offset; i < l; i += stride) {\n vec[0] = a[i];\n vec[1] = a[i + 1];\n fn(vec, vec, arg);\n a[i] = vec[0];\n a[i + 1] = vec[1];\n }\n\n return a;\n };\n}();"],"names":["ARRAY_TYPE","y","i","invert","out","a","a00","a01","a02","a10","a11","a12","a20","a21","a22","b01","b11","b21","det","multiply","b","b00","b02","b10","b12","b20","b22","fromTranslation","v","fromRotation","rad","s","c","fromScaling","create","glMatrix.ARRAY_TYPE","transformMat3","m","x","z","vec","stride","offset","count","fn","arg","l","add","subtract","min","max","scale","distance","length","normalize","len","dot","angle","x1","y1","x2","y2","mag","cosine","exactEquals","sub"],"mappings":"AAMO,IAAIA,EAAa,OAAO,aAAiB,IAAc,aAAe,MAkCxE,KAAK,QAAO,KAAK,MAAQ,UAAY,CAIxC,QAHIC,EAAI,EACJC,EAAI,UAAU,OAEXA,KACLD,GAAK,UAAUC,CAAC,EAAI,UAAUA,CAAC,EAGjC,OAAO,KAAK,KAAKD,CAAC,CACpB,GC6JO,SAASE,EAAOC,EAAKC,EAAG,CAC7B,IAAIC,EAAMD,EAAE,CAAC,EACTE,EAAMF,EAAE,CAAC,EACTG,EAAMH,EAAE,CAAC,EACTI,EAAMJ,EAAE,CAAC,EACTK,EAAML,EAAE,CAAC,EACTM,EAAMN,EAAE,CAAC,EACTO,EAAMP,EAAE,CAAC,EACTQ,EAAMR,EAAE,CAAC,EACTS,EAAMT,EAAE,CAAC,EACTU,EAAMD,EAAMJ,EAAMC,EAAME,EACxBG,EAAM,CAACF,EAAML,EAAME,EAAMC,EACzBK,EAAMJ,EAAMJ,EAAMC,EAAME,EAExBM,EAAMZ,EAAMS,EAAMR,EAAMS,EAAMR,EAAMS,EAExC,OAAKC,GAILA,EAAM,EAAMA,EACZd,EAAI,CAAC,EAAIW,EAAMG,EACfd,EAAI,CAAC,GAAK,CAACU,EAAMP,EAAMC,EAAMK,GAAOK,EACpCd,EAAI,CAAC,GAAKO,EAAMJ,EAAMC,EAAME,GAAOQ,EACnCd,EAAI,CAAC,EAAIY,EAAME,EACfd,EAAI,CAAC,GAAKU,EAAMR,EAAME,EAAMI,GAAOM,EACnCd,EAAI,CAAC,GAAK,CAACO,EAAML,EAAME,EAAMC,GAAOS,EACpCd,EAAI,CAAC,EAAIa,EAAMC,EACfd,EAAI,CAAC,GAAK,CAACS,EAAMP,EAAMC,EAAMK,GAAOM,EACpCd,EAAI,CAAC,GAAKM,EAAMJ,EAAMC,EAAME,GAAOS,EAC5Bd,GAbE,IAcX,CA0DO,SAASe,EAASf,EAAKC,EAAGe,EAAG,CAClC,IAAId,EAAMD,EAAE,CAAC,EACTE,EAAMF,EAAE,CAAC,EACTG,EAAMH,EAAE,CAAC,EACTI,EAAMJ,EAAE,CAAC,EACTK,EAAML,EAAE,CAAC,EACTM,EAAMN,EAAE,CAAC,EACTO,EAAMP,EAAE,CAAC,EACTQ,EAAMR,EAAE,CAAC,EACTS,EAAMT,EAAE,CAAC,EACTgB,EAAMD,EAAE,CAAC,EACTL,EAAMK,EAAE,CAAC,EACTE,EAAMF,EAAE,CAAC,EACTG,EAAMH,EAAE,CAAC,EACTJ,EAAMI,EAAE,CAAC,EACTI,EAAMJ,EAAE,CAAC,EACTK,EAAML,EAAE,CAAC,EACTH,EAAMG,EAAE,CAAC,EACTM,EAAMN,EAAE,CAAC,EACb,OAAAhB,EAAI,CAAC,EAAIiB,EAAMf,EAAMS,EAAMN,EAAMa,EAAMV,EACvCR,EAAI,CAAC,EAAIiB,EAAMd,EAAMQ,EAAML,EAAMY,EAAMT,EACvCT,EAAI,CAAC,EAAIiB,EAAMb,EAAMO,EAAMJ,EAAMW,EAAMR,EACvCV,EAAI,CAAC,EAAImB,EAAMjB,EAAMU,EAAMP,EAAMe,EAAMZ,EACvCR,EAAI,CAAC,EAAImB,EAAMhB,EAAMS,EAAMN,EAAMc,EAAMX,EACvCT,EAAI,CAAC,EAAImB,EAAMf,EAAMQ,EAAML,EAAMa,EAAMV,EACvCV,EAAI,CAAC,EAAIqB,EAAMnB,EAAMW,EAAMR,EAAMiB,EAAMd,EACvCR,EAAI,CAAC,EAAIqB,EAAMlB,EAAMU,EAAMP,EAAMgB,EAAMb,EACvCT,EAAI,CAAC,EAAIqB,EAAMjB,EAAMS,EAAMN,EAAMe,EAAMZ,EAChCV,CACT,CAoGO,SAASuB,EAAgBvB,EAAKwB,EAAG,CACtC,OAAAxB,EAAI,CAAC,EAAI,EACTA,EAAI,CAAC,EAAI,EACTA,EAAI,CAAC,EAAI,EACTA,EAAI,CAAC,EAAI,EACTA,EAAI,CAAC,EAAI,EACTA,EAAI,CAAC,EAAI,EACTA,EAAI,CAAC,EAAIwB,EAAE,CAAC,EACZxB,EAAI,CAAC,EAAIwB,EAAE,CAAC,EACZxB,EAAI,CAAC,EAAI,EACFA,CACT,CAaO,SAASyB,EAAazB,EAAK0B,EAAK,CACrC,IAAIC,EAAI,KAAK,IAAID,CAAG,EAChBE,EAAI,KAAK,IAAIF,CAAG,EACpB,OAAA1B,EAAI,CAAC,EAAI4B,EACT5B,EAAI,CAAC,EAAI2B,EACT3B,EAAI,CAAC,EAAI,EACTA,EAAI,CAAC,EAAI,CAAC2B,EACV3B,EAAI,CAAC,EAAI4B,EACT5B,EAAI,CAAC,EAAI,EACTA,EAAI,CAAC,EAAI,EACTA,EAAI,CAAC,EAAI,EACTA,EAAI,CAAC,EAAI,EACFA,CACT,CAaO,SAAS6B,EAAY7B,EAAKwB,EAAG,CAClC,OAAAxB,EAAI,CAAC,EAAIwB,EAAE,CAAC,EACZxB,EAAI,CAAC,EAAI,EACTA,EAAI,CAAC,EAAI,EACTA,EAAI,CAAC,EAAI,EACTA,EAAI,CAAC,EAAIwB,EAAE,CAAC,EACZxB,EAAI,CAAC,EAAI,EACTA,EAAI,CAAC,EAAI,EACTA,EAAI,CAAC,EAAI,EACTA,EAAI,CAAC,EAAI,EACFA,CACT,CCzdO,SAAS8B,GAAS,CACvB,IAAI9B,EAAM,IAAI+B,EAAoB,CAAC,EAEnC,OAAIA,GAAuB,eACzB/B,EAAI,CAAC,EAAI,EACTA,EAAI,CAAC,EAAI,EACTA,EAAI,CAAC,EAAI,GAGJA,CACT,CA6dO,SAASgC,EAAchC,EAAKC,EAAGgC,EAAG,CACvC,IAAIC,EAAIjC,EAAE,CAAC,EACPJ,EAAII,EAAE,CAAC,EACPkC,EAAIlC,EAAE,CAAC,EACX,OAAAD,EAAI,CAAC,EAAIkC,EAAID,EAAE,CAAC,EAAIpC,EAAIoC,EAAE,CAAC,EAAIE,EAAIF,EAAE,CAAC,EACtCjC,EAAI,CAAC,EAAIkC,EAAID,EAAE,CAAC,EAAIpC,EAAIoC,EAAE,CAAC,EAAIE,EAAIF,EAAE,CAAC,EACtCjC,EAAI,CAAC,EAAIkC,EAAID,EAAE,CAAC,EAAIpC,EAAIoC,EAAE,CAAC,EAAIE,EAAIF,EAAE,CAAC,EAC/BjC,CACT,EAwPqB,UAAY,CAC/B,IAAIoC,EAAMN,IACV,OAAO,SAAU7B,EAAGoC,EAAQC,EAAQC,EAAOC,EAAIC,EAAK,CAClD,IAAI3C,EAAG4C,EAgBP,IAdKL,IACHA,EAAS,GAGNC,IACHA,EAAS,GAGPC,EACFG,EAAI,KAAK,IAAIH,EAAQF,EAASC,EAAQrC,EAAE,MAAM,EAE9CyC,EAAIzC,EAAE,OAGHH,EAAIwC,EAAQxC,EAAI4C,EAAG5C,GAAKuC,EAC3BD,EAAI,CAAC,EAAInC,EAAEH,CAAC,EACZsC,EAAI,CAAC,EAAInC,EAAEH,EAAI,CAAC,EAChBsC,EAAI,CAAC,EAAInC,EAAEH,EAAI,CAAC,EAChB0C,EAAGJ,EAAKA,EAAKK,CAAG,EAChBxC,EAAEH,CAAC,EAAIsC,EAAI,CAAC,EACZnC,EAAEH,EAAI,CAAC,EAAIsC,EAAI,CAAC,EAChBnC,EAAEH,EAAI,CAAC,EAAIsC,EAAI,CAAC,EAGlB,OAAOnC,CACX,CACA,GAAC,ECtwBM,SAAS6B,GAAS,CACvB,IAAI9B,EAAM,IAAI+B,EAAoB,CAAC,EAEnC,OAAIA,GAAuB,eACzB/B,EAAI,CAAC,EAAI,EACTA,EAAI,CAAC,EAAI,GAGJA,CACT,CAgEO,SAAS2C,EAAI3C,EAAKC,EAAGe,EAAG,CAC7B,OAAAhB,EAAI,CAAC,EAAIC,EAAE,CAAC,EAAIe,EAAE,CAAC,EACnBhB,EAAI,CAAC,EAAIC,EAAE,CAAC,EAAIe,EAAE,CAAC,EACZhB,CACT,CAUO,SAAS4C,EAAS5C,EAAKC,EAAGe,EAAG,CAClC,OAAAhB,EAAI,CAAC,EAAIC,EAAE,CAAC,EAAIe,EAAE,CAAC,EACnBhB,EAAI,CAAC,EAAIC,EAAE,CAAC,EAAIe,EAAE,CAAC,EACZhB,CACT,CAgEO,SAAS6C,EAAI7C,EAAKC,EAAGe,EAAG,CAC7B,OAAAhB,EAAI,CAAC,EAAI,KAAK,IAAIC,EAAE,CAAC,EAAGe,EAAE,CAAC,CAAC,EAC5BhB,EAAI,CAAC,EAAI,KAAK,IAAIC,EAAE,CAAC,EAAGe,EAAE,CAAC,CAAC,EACrBhB,CACT,CAUO,SAAS8C,EAAI9C,EAAKC,EAAGe,EAAG,CAC7B,OAAAhB,EAAI,CAAC,EAAI,KAAK,IAAIC,EAAE,CAAC,EAAGe,EAAE,CAAC,CAAC,EAC5BhB,EAAI,CAAC,EAAI,KAAK,IAAIC,EAAE,CAAC,EAAGe,EAAE,CAAC,CAAC,EACrBhB,CACT,CAuBO,SAAS+C,EAAM/C,EAAKC,EAAGe,EAAG,CAC/B,OAAAhB,EAAI,CAAC,EAAIC,EAAE,CAAC,EAAIe,EAChBhB,EAAI,CAAC,EAAIC,EAAE,CAAC,EAAIe,EACThB,CACT,CAwBO,SAASgD,EAAS/C,EAAGe,EAAG,CAC7B,IAAIkB,EAAIlB,EAAE,CAAC,EAAIf,EAAE,CAAC,EACdJ,EAAImB,EAAE,CAAC,EAAIf,EAAE,CAAC,EAClB,OAAO,KAAK,MAAMiC,EAAGrC,CAAC,CACxB,CAqBO,SAASoD,EAAOhD,EAAG,CACxB,IAAIiC,EAAIjC,EAAE,CAAC,EACPJ,EAAII,EAAE,CAAC,EACX,OAAO,KAAK,MAAMiC,EAAGrC,CAAC,CACxB,CA+CO,SAASqD,EAAUlD,EAAKC,EAAG,CAChC,IAAIiC,EAAIjC,EAAE,CAAC,EACPJ,EAAII,EAAE,CAAC,EACPkD,EAAMjB,EAAIA,EAAIrC,EAAIA,EAEtB,OAAIsD,EAAM,IAERA,EAAM,EAAI,KAAK,KAAKA,CAAG,GAGzBnD,EAAI,CAAC,EAAIC,EAAE,CAAC,EAAIkD,EAChBnD,EAAI,CAAC,EAAIC,EAAE,CAAC,EAAIkD,EACTnD,CACT,CASO,SAASoD,EAAInD,EAAGe,EAAG,CACxB,OAAOf,EAAE,CAAC,EAAIe,EAAE,CAAC,EAAIf,EAAE,CAAC,EAAIe,EAAE,CAAC,CACjC,CA2FO,SAASgB,EAAchC,EAAKC,EAAGgC,EAAG,CACvC,IAAIC,EAAIjC,EAAE,CAAC,EACPJ,EAAII,EAAE,CAAC,EACX,OAAAD,EAAI,CAAC,EAAIiC,EAAE,CAAC,EAAIC,EAAID,EAAE,CAAC,EAAIpC,EAAIoC,EAAE,CAAC,EAClCjC,EAAI,CAAC,EAAIiC,EAAE,CAAC,EAAIC,EAAID,EAAE,CAAC,EAAIpC,EAAIoC,EAAE,CAAC,EAC3BjC,CACT,CA8CO,SAASqD,EAAMpD,EAAGe,EAAG,CAC1B,IAAIsC,EAAKrD,EAAE,CAAC,EACRsD,EAAKtD,EAAE,CAAC,EACRuD,EAAKxC,EAAE,CAAC,EACRyC,EAAKzC,EAAE,CAAC,EAEZ0C,EAAM,KAAK,KAAKJ,EAAKA,EAAKC,EAAKA,CAAE,EAAI,KAAK,KAAKC,EAAKA,EAAKC,EAAKA,CAAE,EAEhEE,EAASD,IAAQJ,EAAKE,EAAKD,EAAKE,GAAMC,EAEtC,OAAO,KAAK,KAAK,KAAK,IAAI,KAAK,IAAIC,EAAQ,EAAE,EAAG,CAAC,CAAC,CACpD,CA+BO,SAASC,EAAY3D,EAAGe,EAAG,CAChC,OAAOf,EAAE,CAAC,IAAMe,EAAE,CAAC,GAAKf,EAAE,CAAC,IAAMe,EAAE,CAAC,CACtC,CA2BU,IAAC6C,EAAMjB,GA4CI,UAAY,CAC/B,IAAIR,EAAMN,IACV,OAAO,SAAU7B,EAAGoC,EAAQC,EAAQC,EAAOC,EAAIC,EAAK,CAClD,IAAI3C,EAAG4C,EAgBP,IAdKL,IACHA,EAAS,GAGNC,IACHA,EAAS,GAGPC,EACFG,EAAI,KAAK,IAAIH,EAAQF,EAASC,EAAQrC,EAAE,MAAM,EAE9CyC,EAAIzC,EAAE,OAGHH,EAAIwC,EAAQxC,EAAI4C,EAAG5C,GAAKuC,EAC3BD,EAAI,CAAC,EAAInC,EAAEH,CAAC,EACZsC,EAAI,CAAC,EAAInC,EAAEH,EAAI,CAAC,EAChB0C,EAAGJ,EAAKA,EAAKK,CAAG,EAChBxC,EAAEH,CAAC,EAAIsC,EAAI,CAAC,EACZnC,EAAEH,EAAI,CAAC,EAAIsC,EAAI,CAAC,EAGlB,OAAOnC,CACX,CACA,GAAC","x_google_ignoreList":[0,1,2,3]}